
Recursive DNS Cache Auditing

Prepared by: Jose Avila III

Edited By: Brett Watson

July 25, 2008

ONZRA 16068 Maricopa Highway Ojai, CA 93023 T 805-201-8905 jose@onzra.com www.ONZRA.com

Introduction

Dan Kaminsky of IOActive recently discovered a flaw in multiple DNS server implementations. The flaw is

detailed in US-Cert Vulerability Note VU#800113. Dan coordinated efforts with multiple experts, including

Paul Vixie, to organize what could arguably be one of the most responsible disclosures conducted in this

industry. This disclosure and subsequent release involved multiple vendors meeting together to discuss

issues, and courses of action, and then simultaneously releasing patches to the public.

In the months leading up to the public release, Jose Avila of ONZRA discussed the need for an open source

solution for detecting cache poisoning events with Dan. As a result of that discussion, ONZRA developed

CacheAudit, which ONZRA released under the BSD License.

Now that details of the exploit have been leaked to the Internet through various blogs, it is more critical than

ever to patch as soon as possible. Even when (if?) this issue is resolved there may be more cache poisoning

flaws in the wild, as yet undiscovered. As Dan said in his blog, he “could have missed something.” Until DNS

security measures are in place (can you say, “DNSSEC”?), organizations need to be on their toes. As such,

ONZRA hopes this project will aid organizations in detecting wether or not they have been compromised.

This white paper provides a brief background on DNS as it relates to cache auditing, a method for auditing

recursive DNS server caches, and the details of CacheAudit, which is based on these auditing methods.

Background On DNS

We cover two types of DNS servers: recursive and authoritative. Authoritative name servers only serve the

records that they are authoritative for and refer non-authoritative recursive queries to the root servers. Most

clients never query the authoritative servers directly, but rather query a local recursive server. This recursive

server will query the authoritative name servers when needed.

In contrast, recursive servers will answer both authoritative, and non-authoritative queries, and will store

answers it receives in memory. This is known as caching. The answer will be cached for the length of time

specified by the authoritative name server TTL, or Time To Live. When a recursive server receives a query, it

will first check to see if it has an answer to return to the client from cache. If it does have a valid response, it

will return that response to the client. If a response does not exist in cache, the recursive server will iteratively

query the roots, and subsequent authoritative servers, to find the proper answer to return to the client.

The Cache Dump

Most modern resolvers have the ability to dump an existing cache to a file. This file contains the name, RR

type, remaining TTL, and answer for each cached record. Given that there is little performance impact in

Recursive DNS Cache Auditing 1

http://www.kb.cert.org/vuls/id/800113
http://www.kb.cert.org/vuls/id/800113

dumping the cache, and that this can be done while the name server is running without affecting normal

operations, we have a good means to perform additional processing of the cached data externally.

If there were no changes being made in DNS, and there were not multiple views of a zone from different

physical locations, in theory one should be able to re-query the same name servers and get the same

answers as those in the cache dump. Given there are many different configurations for DNS, and that DNS is

an ever changing environment, the validation procedure gets a bit more complex, but that’s what we are here

to tackle.

Validating The Constantly Changing Cache

When validating a recursive server’s cache, we not only want to know if the cache is accurate at a particular

point in time, but we want to know that it is always accurate. When things are not accurate, we want to

know. This can be done by regularly taking cache dumps (say every 5 minutes) from a recursive name server

and validating them. There is no point in re-validating something you validated during the last iteration, and

as such, with each new iteration, you can compare against the previous iteration, and validate the changes.

These changes would either be new entries, or modified entries in the cache. The validation process contains

three basic steps: 1) Validation against authoritative name servers, 2) Validation against peers that also

validate against authoritative servers, and 3) Validation of Content Deliver Networks (CDN).

Authoritative Validation

Once you have the set of records to validate, the validation service must query to find the authoritative name

servers for those records. Once the authoritative name servers are found each one is queried, and the results

are compared against the cached recordset in question. If the results returned from the authoritative name

server match the cached recordset, that particular cached entry has been validated. If the contents of this

recordset were not validated at this stage, it may indicate a true cache poisoned record, but it’s also possible

the record could have been legitimately modified at the authoritative server since the last time the cached

entry was made.

Recursive DNS Cache Auditing 2

Peer Validation

Peers are other recursive DNS servers within your infrastructure that use a different cache than the server

you are validating. These recursive servers are referred to as peers as they should be servers that are part of

your infrastructure so as to not place an additional load on other providers’ resources.

If we are only validating against the authoritative name servers, the record may have changed since the time

the dump was processed. Since recursive DNS peers cache an answer for the specified time to live

provided by the authoritative name server, there will be a historic representation of what was served by the

authoritative name servers in the recursive cache. As the cache of one of the peers could have been

poisoned, there should be a required threshold of agreement among recursive peers before acknowledging

that an answer is valid.

Content Delivery Networks (CDN) Validation

When testing initial versions of the CacheAudit script, one deficiency noted was the vast number of false

positives. A good portion of these were from Akamai. As we queried repeatedly for n3g.akamai.net, we

would receive a different set of IP addresses for each query. The sets of IP Addresses that were returned

would vary based on the source address of the query. (See Table 1)

California Illinois

64.215.162.85 207.65.73.227

64.215.162.47 207.191.178.194

64.215.162.21 207.191.178.194

64.215.162.77 207.65.73.227

64.215.162.21 207.65.46.161

64.215.162.79 207.191.178.194

64.215.162.37 207.65.46.161

64.215.162.52 207.65.46.161

64.215.162.60 207.65.46.161

64.215.162.5 207.65.46.161

64.215.162.4 207.65.46.161

64.215.162.71 207.65.46.161

64.215.162.38 207.65.73.227

Recursive DNS Cache Auditing 3

California Illinois

64.215.162.69 207.65.46.161

64.215.162.30 207.65.73.227

Table 1.

From analyzing the results in Table 1, we assumed that if queries originate from the same location in

California, anything in the 64.215.162.0/24 range is a valid response, whereas if queries originate from

Illinois, anything in the 207.65.46.0/24, 207.65.73.0/24, and 207.191.178.0/24 ranges would be valid.

Through testing we only found up to 3 class C networks utilized for a particular record. As long as our

validation is happening from the same physical location as the resolver cache that we are analyzing , this has

proven to be a reasonable method for lowering the false positive alert ratio.

Alerting

If a record set has not been validated in the authoritative, peer, or CDN validation stages, an alert should fire.

It is important to note, when alerts are fired it does not mean that your server for sure has been cache

poisoned, but rather there has been a discrepancy. This record should be investigated further to determine

weather or not it is due to an attack. In the event that false positives or actual poisoning events are detected,

ONZRA would be interested in the details as to better improve future revisions of this product.

CacheAudit currently logs entries for events to the local syslog server. If you are using Linux or OSX this

should not be a problem. ONZRA plans to support email notifications in the future. As CacheAudit is open

source, the application can easily be extended to support other alert mechanisms.

Using CacheAudit

CacheAudit currently supports Microsoft DNS, BIND, and PowerDNS. Each of these resolver

implementations have a mechanism for dumping the in-memory cache. You can use netcat to forward the

requests to the CacheAudit service on your network.

 BIND

rndc dumpdb; cat /var/named/data/cache_dump.db | nc <host> <port>

Recursive DNS Cache Auditing 4

Microsoft DNS

nc -v -t -e "dnscmd.exe /ZonePrint ..Cache" <host> <port>

PowerDNS

rec_control dump-cache /tmp/cache; cat /tmp/cache | nc <host> <port>

Administrators may want to note that if using the PowerDNS, or Microsoft DNS recursive server, the server

will queue, and temporarily not answer queries. If BIND 9 is compiled with threads, it will not lock, and will

continue to answer queries during the cache dump process. The duration of time it takes to dump the

database may vary based on size of the cache, and processing power. With MIcrosoft DNS it is

recommended that the data get dumped locally and then transfered across the network, as opposed to

being dumped from a remote machine. As with deploying any software in your infrastructure, ONZRA highly

recommends testing in a testbed prior to deploying throughout your network.

Summary
The recursive DNS provider community needs more tools like this to assist in detecting and troubleshooting

cache poisoning events. While this tool is in its early stages, I hope that feedback from the community will

help drive the design of future revisions, so we can better arm ourselves in the future for more events like

those discovered by Dan Kaminsky. If there are any modifications that are needed to get CacheAudit working

in your environment, or if you would just like to request additional features, feel free to contact ONZRA.

Recursive DNS Cache Auditing 5

About ONZRA

ONZRA focuses on highly specialized security solutions and industrial grade development consulting services. ONZRA

has strategic partnerships with many of the top security and development groups on the planet. These are the best of

breed, industry movers and shakers. You have read their books and used their tools; you may have even seen them

speak at conferences around the world like Black Hat, RSA and ORAC.

From providing Cisco security design and training, architectural product development, vulnerability assessments of your

web presence and web applications, to guiding your in-house development team towards a launch date, ONZRA is a

one stop shop for the absolute best of the best.

Mailing Address

16068 Maricopa Highway

Ojai, CA 93023

Direct: 805-201-8905

Email: Jose.Avila@ONZRA.com

www.ONZRA.com

(c) 2008 ONZRA LLC All rights reserved. No reproduction or redistribution without written permission.

Recursive DNS Cache Auditing 6

mailto:Jose.Avila@ONZRA.com?subject=Recursive%20DNS%20Cache%20Auditing
mailto:Jose.Avila@ONZRA.com?subject=Recursive%20DNS%20Cache%20Auditing
http://www.ONZRA.com
http://www.ONZRA.com

